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Input data and methodological summary 
Exposure 
Definition 
Exposure to ambient particulate matter pollution is defined as the population-weighted annual 
average mass concentration of particles with an aerodynamic diameter less than 2.5 micrometers 
(PM2.5) in a cubic meter of air. This measurement is reported in µg/m3. 

Input data 
Ambient air pollution exposure estimates use input data from multiple sources. These include 
satellite observations of aerosols in the atmosphere, ground monitor measurements, chemical 
transport model simulations, population estimates, and land-use data. 

Table 1: Data inputs for exposure for ambient particulate matter pollution 

 Input data Exposure 
Site-years (total) 5442 
Number of countries with data 204 
Number of GBD regions with data (out of 21 regions) 21 
Number of GBD super-regions with data (out of 7 super-
regions) 7 

 

Details for updates in exposure methodology and input data for the Global Burden of Disease (GBD) 
Study 2020 are as follows. 

PM2.5 ground measurement database 
For GBD 2020, ground monitor measurements were updated to include more recent measurements 
from sites included in GBD 2019 and additional measurements from new monitors. New data were 
added to the database from several sources, including the European Environment Agency, United 



States Environment Protection Agency, and the OpenAQ database. The complete, updated dataset 
included measurements of PM10 and PM2.5 concentrations between 2018 and 2020 from 18,406 
ground monitors from 120 countries, primarily from the USA, China, European countries, and USA 
embassies and consulates. Annual averages were excluded if they were based on less than 75% 
coverage within a year. If information on coverage was not available, data were included unless 
there was already sufficient data within the country of interest (monitor density greater than 0.1). 

For sites with PM10 measurements only, these observations were converted from PM10 to PM2.5 
measurements using a hierarchy of conversion factors (PM2.5/PM10 ratios): (i) where possible, a 
“local” conversion factor was used, constructed as the ratio of the average measurements (of PM2.5 
and PM10) from within 50 km of the location of the PM10 measurement, and within the same 
country, if such measurements were available; (ii) where local information was not sufficient to 
construct a conversion factor, a country-wide conversion factor was used; and (ii) where appropriate 
information within a country did not exist, a region-level factor was used. In each case, to avoid the 
possible effects of outliers in the measured PM2.5 and PM10 data, extreme values of the ratios were 
excluded. These extreme values were defined as those greater/lesser than the 95th and 5th quantiles 
of the empirical distributions of conversion factors. As with the GBD 2013, 2015, 2016, 2017, and 
2019 databases, in addition to values of PM2.5 and whether they were direct measurements or 
conversions from PM10, the GBD 2020 database also included additional information (where 
available) concerning the ground measurements, such as monitor geo-coordinates and monitor site 
type. 

Satellite-based estimates 
Global satellite-derived estimates (V4.GL.03.NoGWR) used as inputs to DIMAQ2 for 1998–2019 and 
for January to August 2020 are used at 0.1o x 0.1o resolution (~11 x 11 km resolution at the equator) 
and follow the methodology described in Hammer et al., 2020.1 The algorithm uses aerosol optical 
depth (AOD) from several updated satellite products (MAIAC, MODIS, and MISR). Ground-based 
observations from a global sunphotometer network (AERONET version 3) are used to combine 
different AOD information sources. The GEOS-Chem chemical transport model was used for 
geophysical relationships between surface PM2.5 and AOD. For GBD 2020, an additional update to 
biomass burning emissions from 2015 to 2020 was made. This update allows for time-varying 
biomass burning emissions in the simulation for those years, where they had previously been 
unavailable after 2014. Given lags in releases of available meteorological information used in the 
GEOS Chem simulations, for September to December 2020, the estimates incorporate satellite 
retrievals from 2020, but GEOS-Chem simulated values for 2019 as well as biomass burning 
emissions from 2019. Further, satellite retrievals for all of 2020 were limited to MODIS DT, DB, and 
MAIAC. We included MISR inputs for January to June 2020 only, as this product was not available 
past June when the satellite-based estimates were generated. 

 

Chemical transport model simulations 
Estimates of the sum of particulate sulfate, nitrate, ammonium, and organic carbon and the 
compositional concentrations of mineral dust simulated using the GEOS-Chem chemical transport 
model, and a measure combining elevation and the distance to the nearest urban land surface (as 
described in van Donkelaar et al. 20162 and Hammer et al. 2020)1 were available for 2000–2020 for 
each 0.1o × 0.1o grid cell.  



Population data  
We obtained a comprehensive, high-resolution gridded population dataset from the Gridded 
Population of the World (GPW) database. Estimates for 2000, 2005, 2010, 2015, and 2020 were 
available from the GPW version 4, with estimates for 1990 and 1995 obtained from the GPW version 
3. These data are provided on a 0.0083o × 0.0083o resolution. Aggregation to each 0.1o × 0.1o grid cell 
was accomplished by summing the central 12 × 12 population cells. Populations estimates for 2001–
2004, 2006–2009, 2011–2014 and 2016–2019 were obtained by interpolation using natural splines 
with knots placed at 2000, 2005, 2010, 2015, and 2020. This was performed for each grid cell.  

Modelling strategy 
The following is a summary of the modelling approach, known as the Data Integration Model for Air 
Quality (DIMAQ) used in GBD 2015, 2016, 2017, 2019, and 2020. 3,4 

Before the implementation of DIMAQ in GBD 2010 and 2013, exposure estimates were obtained 
using a single global function to calibrate available ground measurements to a “fused” estimate of 
PM2.5: the mean of satellite-based estimates and those from the TM5 chemical transport model, 
calculated for each 0.1o × 0.1o grid cell. This approach was recognised to represent a trade-off 
between accuracy and computational efficiency when utilising all the available data sources. In 
particular, the GBD 2013 exposure estimates were known to underestimate ground measurements 
in specific locations (see discussion in Brauer et al., 2015).5 This underestimation was largely due to 
the use of a single, global calibration function, whereas in reality, the relationship between ground 
measurements and other variables varies spatially. 

In GBD 2015 and 2016, coefficients in the calibration model were estimated for each country 
through DIMAQ. Where data were insufficient within a country, information was “borrowed” from a 
region-level aggregation, and where information was still insufficient, from the super-region-level 
aggregation. Individual country-level estimates were therefore based on a combination of 
information from the country and its region and super-region. This was implemented within a 
Bayesian hierarchical modelling (BHM) framework. BHMs provide an extremely useful and flexible 
framework in which to model complex relationships and dependencies in data. Uncertainty can also 
be propagated through the model, allowing uncertainty arising from different components (both 
data sources and models) to be incorporated within estimates of uncertainty associated with the 
final estimates. The results of the modelling comprise a posterior distribution for each grid cell, 
rather than just a single point estimate, allowing a variety of summaries to be calculated. The 
primary outputs for this process are the median and 95% uncertainty intervals for each grid cell. 
Based on the availability of ground measurement data, modelling and evaluation were focused on 
the year 2016. 

The model used from GBD 2017 onward (GBD 2017, 2019, and now 2020) also included within 
country calibration variation.6 This model, henceforth referred to as DIMAQ2, provides a number of 
substantial improvements over the initial formulation of DIMAQ. In DIMAQ, ground measurements 
from different years were all assumed to have been made in the primary year of interest and then 
regressed against values from other inputs (satellites, etc.) made in that year. In the presence of 
changes over time, therefore, and particularly in areas where no recent measurements were 
available, there was the possibility of mismatches between the ground measurements and other 
variables. In DIMAQ2, ground measurements are matched with other inputs (over time), and the 
(global-level) coefficients are allowed to vary over time, subject to smoothing that is induced by a 
first-order random walk process. In addition, the manner in which spatial variation can be 
incorporated within the model has developed: where there are sufficient data, the calibration 
equations can now vary (smoothly) both within and between countries, achieved by allowing the 



coefficients to follow (smooth) Gaussian processes. Where there are insufficient data within a 
country, to produce accurate equations, information is borrowed as before from lower down the 
hierarchy and is supplemented with information from the wider region. 

DIMAQ2 as described above was used for all regions except for the north Africa/Middle East and 
sub-Saharan Africa super-regions, where there are insufficient data across years to allow the extra 
complexities of the new model to be implemented. In these super-regions, a simplified version of 
DIMAQ2 is used in which the temporal component is dropped. 

Inference and prediction 
Continuous explanatory variables: 

o (SAT) Estimate of PM2.5 (in µg/m3) from satellite remote sensing on the log-scale. 
o (POP) Estimate of population for the same year as SAT on the log-scale.  
o (SANOC) Estimate of the sum of sulfate, nitrate, ammonium, and organic carbon 

simulated using the GEOS-Chem chemical transport model. 
o (DST) Estimate of compositional concentrations of mineral dust simulated using the 

GEOS-Chem chemical transport model. 
o (EDxDU) The log of the elevation difference between the elevation at the ground 

measurement location and the mean elevation within the GEOS-Chem simulation 
grid cell multiplied by the inverse distance to the nearest urban land surface. 
 

Discrete explanatory variables: 

o (LOC) Binary variable indicating whether exact location of ground measurement is 
known. 

o (TYPE) Binary variable indicating whether exact type of ground monitor is known. 
o (CONV) Binary variable indicating whether ground measurement is PM2.5 or 

converted from PM10. 
Interactions: 

o Interactions between the binary variables and the effects of SAT. 
 

Random effects: 
o Regional temporal (random walk) hierarchical random-effects on the intercept 
o Regional hierarchical random-effects for the coefficient associated with SAT  
o Regional hierarchical random-effects for the coefficient associated with POP 
o Smoothed, spatially varying, random-effects for the intercept 
o Smoothed, spatially varying, random-effects for the coefficient associated with SAT 

 

Due to both the complexity of the models and the size of the data, notably the number of spatial 
predictions that are required, recently developed techniques that perform “approximate” Bayesian 
inference based on integrated nested Laplace approximations (INLA) were used.7 Computation was 
performed using the R interface to the INLA computational engine (R-INLA). For GBD 2019 and GBD 
2020, the model also implements an innovative way to use samples from the (Bayesian) model to 
represent distributions of estimated concentrations in each grid cell. Estimates, and distributions 
representing uncertainty, of concentrations for each grid cell are obtained by taking repeated (joint) 
samples from the posterior distributions of the parameters and calculating estimates based on a 
linear combination of those samples and the input variables.8 

DIMAQ2 was used to produce grid-cell (0.1o × 0.1o) level estimates of ambient PM2.5 for 1990, 1995, 
and 2010–2020 by matching the gridded estimates with the corresponding coefficients from the 



calibration. For the year 2020, additional analysis was conducted to incorporate updated ground 
monitor (1777 observations for 2020) and satellite-based data (as described above) to examine 
potential impacts of the COVID-19 pandemic on ambient particulate matter pollution. 

Model evaluation 
Model development and comparison was performed using within- and out-of-sample assessment. 
For evaluation, cross-validation was performed using 25 combinations of training (80%) and 
validation (20%) datasets. Validation sets were obtained by taking a stratified random sample, using 
sampling probabilities based on the cross-tabulation of PM2.5 categories (0–24.9, 25–49.9, 50–74.9, 
75–99.9, 100+ µg/m3) and super-regions, resulting in sets with the same distribution of PM2.5 
concentrations and super-regions as the overall set of sites. The following metrics were calculated 
for each training/validation set combination: for model fit—R2; for predictive accuracy—root mean 
squared error (RMSE) and population-weighted root mean squared error (PwRMSE). 

Evaluation of model results for GBD 2020 were comparable to those from GBD 2013 and GBD 2017 
(the most recent model evaluation prior to GBD 2020). For GBD 2020, DIMAQ2 predictions of ground 
measurements in all super-regions produced a mean out of sample population-weighted RMSE of 
8.50 (95% UI 6.17–12.77) µg/m3 and an R2 of 0.909 (0.886–0.926). The high-income super-region 
produced the most accurate predictions, with a mean population-weighted RMSE of 2.16 (2.09–
2.23) µg/m3, while south Asia produced the largest population-weighted mean RMSE, 31.56 (18.95– 
51.88) µg/m3. Trends in relative magnitude of PwRMSE are consistent with previous DIMAQ 
evaluations in GBD 2017 and 2019. 

Figure 1: Summary measure of predictive ability, globally and by super-region. Points denote 
median values of out-of-sample population-weighted root mean square error (µg/m3) from 25 
validation sets. Vertical lines denote 95% uncertainty interval bounds. 

 



 
Table 2: Summary measure of predictive ability, globally and by super-region. Values denote 
median, lower, and upper 95% uncertainty interval bounds of out-of-sample population-weighted 
relative error (root mean square error/mean PM2.5 prediction reported in µg/m3) from 25 validation 
sets. 

 Location Median Lower Upper 

Global 0.115 0.105 0.133 

Central Europe, eastern Europe, central Asia 0.189 0.180 0.199 

High income 0.151 0.147 0.155 

Latin America and Caribbean 0.234 0.179 0.313 

North Africa and Middle East 0.243 0.217 0.263 

South Asia 0.452 0.349 0.616 

Southeast Asia, east Asia, and Oceania 0.174 0.169 0.184 

Sub-Saharan Africa 0.322 0.256 0.409 

 

Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level (TMREL) was assigned a uniform distribution with 
lower/upper bounds given by the average of the minimum and 5th percentiles of outdoor air 
pollution cohort studies exposure distributions conducted in North America, with the assumption 
that current evidence was insufficient to precisely characterise the shape of the concentration-
response function below the 5th percentile of the exposure distributions. The TMREL was defined as 
a uniform distribution rather than a fixed value in order to represent the uncertainty regarding the 
level at which the scientific evidence was consistent with adverse effects of exposure. The specific 
outdoor air pollution cohort studies selected for this averaging were based on the criteria that their 
5th percentiles were less than that of the American Cancer Society Cancer Prevention II (CPSII) 
cohort’s 5th percentile of 8.2 based on Turner et al. (2016).9 This criterion was selected because GBD 
2010 used the minimum, 5.8, and 5th percentile solely from the CPS II cohort. The resulting 
lower/upper bounds of the distribution for GBD 2020 were 2.4 and 5.9. This has not changed since 
GBD 2015. 

Relative risks and population attributable fractions 
Input data 
For GBD 2020, as in previous GBD cycles, we created one set of cause-specific risk curves for both 
household air pollution and ambient particulate matter pollution as two different sources of PM2.5. 
In GBD 2017, we estimated the particulate matter-attributable burden of disease based on the 
relation of long-term exposure to PM2.5 with ischaemic heart disease, stroke (ischaemic and 
haemorrhagic), COPD, lung cancer, acute lower respiratory infection, and type 2 diabetes. In GBD 
2019, we added adverse birth outcomes including low birthweight and short gestation as 
contributors to PM2.5-attributable burden. Because these are risk factors (not outcomes) included in 
the GBD study, we performed a mediation analysis, in which a proportion of the burden attributable 
to low birthweight and short gestation is attributed to PM2.5 pollution. 



For the six non-mediated outcomes, we used results from cohort and case-control studies of 
ambient PM2.5 pollution and cohort studies, case-control studies, and randomised-controlled trials of 
household use of solid fuel for cooking. For GBD 2020, we excluded secondhand smoke cohort and 
case-control studies from risk curve input data. 

We conducted a literature review for studies of PM2.5 (ambient and household air pollution) and risk 
of lower respiratory infection using the search string below. We searched the PubMed database for 
studies published between January 1, 2017, and July 22, 2020 (date of search). 32 initial results were 
obtained from the database, 31 of which were excluded during title-abstract and full-text screening. 
The remaining study was later excluded due to insufficient information reported on the study-
specific exposure distribution. 

Search string: ((("Air Pollution"[Mesh] OR "Particulate Matter"[Mesh] OR "air 
pollution"[Title/Abstract] OR "urban air pollution"[Title/Abstract] OR "ambient air 
pollution"[Title/Abstract] OR "airborne particulate matter"[Title/Abstract]) OR (“Air Pollution, 
Indoor”[Mesh] OR “Household air”[Title/Abstract] OR “Indoor air pollution”[Title/Abstract] OR 
“Indoor fine particulate matter”[Title/Abstract] OR “Indoor particulate matter”[Title/Abstract] OR 
“Indoor air quality”[Title/Abstract])) AND ("lower respiratory infection"[Title/Abstract] OR 
"LRI"[Title/Abstract])) 

Table 3: Data inputs for relative risks for ambient particulate matter pollution 

 Input data Relative risk 
Site-years (total) 160 
Number of countries with data 37 
Number of GBD regions with data (out of 21 regions) 15 
Number of GBD super-regions with data (out of 7 super-
regions) 7 

 

For GBD 2020, as in GBD 2019, the meta-regression—Bayesian, regularised, trimmed (MR-BRT) 
meta-regression tool was used to create relative risk estimates, with three key updates to input 
data. In GBD 2017, we used relative estimates for active smoking and secondhand smoke 
(converting cigarettes per day to PM2.5 exposure) to estimate relative risk predictions for PM2.5 
exposure at the highest end of the exposure–response curve. These data were included because the 
majority of the air pollution epidemiological studies have been performed in high-income countries 
which have lower levels of ambient PM2.5 pollution. This posed a barrier to extrapolating relative risk 
estimates from the steep relationship at the beginning of the exposure range to locations with high 
exposures but no relative risk estimates, such as India and China. In GBD 2019, we incorporated 
estimates at high PM2.5 levels by adding recently published ambient PM2.5 studies conducted in China 
and other higher-exposure settings and additional HAP studies.10,11,12,13,14 Additionally, the switch to 
MR-BRT splines in GBD 2019 (instead of the integrated exposure–response function employed in 
GBD 2017) presented a more flexible approach that allowed the curve to fit ambient and household 
data and removed the need for active smoking data to anchor the curve at higher exposures. The 
inclusion of active smoking and secondhand smoking data in previous GBD cycles required 
conversion from cigarettes per day to PM2.5 exposure and introduced other differences, including 
differences in dose rates and those between voluntary (active smoking) and involuntary (ambient 
PM2.5, household air pollution, secondhand smoke) exposures. Due to these factors, in GBD 2019, we 
removed active smoking data from the relative risk model’s input data. In GBD 2020, we also 
removed secondhand smoking data, completing the transition to only using PM2.5 and HAP relative 



risk input data. This removes important sources of uncertainty in our earlier estimates.15,16 The 
following plot displays PM2.5 risk curves from GBD 2019 and from GBD 2020, with and without 
secondhand smoking RR input data: 

For GBD 2019, we implemented age-specific risk curves for cardiovascular diseases (ischaemic heart 
disease and stroke) due to evidence suggesting relative risk decreases with age for these 
outcomes.17 These risk curves were created for five-year age groups from 25–29 to 95+. For GBD 
2020, we dropped the use of age-specific risk curves for cardiovascular disease outcomes. Linear 
regressions on cardiovascular disease input data predicting log(RR) by mean cohort age, with and 
without random effects on study ID, were fit to ischaemic heart disease and stroke input data 
separately. None of these regressions showed evidence for a significant association between the 
two variables. Additionally, we used the MR-BRT automated covariate selection tool (detailed 
below) to test mean cohort age for significance as a bias covariate and found no significant results. 
We therefore generated a single risk curve for each of the cardiovascular outcomes and applied it 
across all age groups. 

For all PM2.5 outcomes, the standard error of observations from studies with multiple observations 
for a single cohort that reported an unstratified sample size were multiplied by the square root of n, 
where n is the total number of observations for a given cohort. This adjustment was made to 
prevent a single cohort or study from unduly weighting the final risk curve. 

As in previous GBD cycles, we considered the published relative risk over a range of exposure data 
when fitting the risk curves. For OAP studies, the relative risk informs the curve from the 5th to the 
95th percentile of observed exposure. When this is not available in the published study, we estimate 
the distribution from the provided information (mean and standard deviation, mean and IQR, etc.). 



We scale the RR to this range. For HAP studies, we allow each study to inform the curve from the 
ExpOAP to the ExpOAP+ExpHAP, where ExpOAP is the GBD 2019 estimate of the ambient exposure level in 
the study location and year, and ExpHAP is the GBD 2020 estimate of the excess exposure for those 
who use solid fuel for cooking in the study location and year. 

MR-BRT risk splines 
To estimate relative risk curves for each of the PM2.5 outcomes, we used the MR-BRT meta-
regression tool to fit splines on the input datasets of OAP and HAP studies. We used the following 
functional form, where X and XCF represent the range of exposure characterised by the effect size: 

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋𝐶𝐶𝐶𝐶)�~log (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑒𝑒𝑒𝑒 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

Several key updates were made to the model fitting methods. For each risk-outcome pair, model 
settings and priors were tested when fitting the MR-BRT splines. The final models used third order 
splines with three interior knots and a constraint on the right-most segment forcing the fit to be 
linear rather than cubic. Splines were also constrained to be concave and monotonically increasing, 
the most biologically plausible shape for the PM2.5 risk curve. We used an ensemble approach to 
generate final spline predictions, in which 50 different models were run with randomly placed knots, 
then weighted and combined based on a measure of fit that penalises excessive changes in the 
maximum derivative of the curve. Knots were free to be placed across the entire domain of the input 
exposure data. To prevent over-fitting, on the non-linear segments, we implemented a Gaussian 
prior on the third derivative of mean 0 and variance 1e-4. On the linear segment, a stronger prior of 
mean 0 and variance 1e-6 was used to ensure that the risk curves do not continue to increase 
beyond the range of the data. 10% of all observations were trimmed during model fitting, in 
accordance with GBD protocol across risk factor teams. 

To select significant covariates from those extracted (see table below) to quantify between-study 
heterogeneity, we performed covariate selection. The MR-BRT automated covariate selection tool 
implements a two-step process. First, a series of loosening Lasso penalty parameters are applied to a 
log-linear meta-regression on all input effect size observations. Then, covariates with a non-zero 
coefficient are tested for significance using a Gaussian prior (significance threshold = 0.05). A 
Gaussian prior was used on each covariate’s beta during spline fitting with a mean 0 and variance of 
0.1 multiplied by the standard deviation of the beta from the log-linear meta-regression. Type 2 
diabetes was the only outcome for which a significant covariate was identified. Its selected covariate 
was cv_hap, a binary indicator for whether or not an observation was from a household air pollution 
study. 

Covariate name Covariate description 
cv_subpopulation Study represents the general population; study represents a subgroup 

(eg, high-risk group) 
cv_exposure_population Study measures individual-level exposure (≤1 km radius); study 

measures population-level exposure 
cv_exposure_self_report Exposure is self-reported; exposure is measured externally 

cv_exposure_study Exposure is measured multiple times; exposure is measured only at 
baseline 

cv_outcome_self_report Outcome is self-reported; outcomes is based on death certificate or 
medical record 

cv_outcome_unblinded Study implements unblinded assessment; assessment of outcome is 
blind to exposure (and vice versa) 



cv_reverse_causation Study presents no risk of reverse causation; risk of reverse causation 
cv_confounding_nonrandom Non-randomised study; randomised study 
cv_confounding_uncontrolled Study is randomised/outcome controlled for age, sex, education, 

income, and all critical determinants of outcome; study is controlled 
for age, sex, and other critical determinants of outcome; study is 
controlled for only age and sex 

cv_selection_bias Study reports >95% follow-up; study reports 85-95% follow-up; study 
reports <85% follow-up 

cv_hap Studies household air pollution; studies ambient air pollution 

 

1000 predictions of the effect size were generated across the exposure distribution for use in 
calculating burden estimates. These predictions were created by incorporating predictions of 
between-study heterogeneity to characterise the model’s uncertainty. We implemented the Fisher 
Scoring correction to the heterogeneity parameter, which corrects for data-sparse situations. In such 
cases, the between-study heterogeneity parameter estimate may be 0, simply from lack of data. The 
Fisher Scoring correction uses a quantile of gamma, which is sensitive to the number of studies, 
study design, and reported uncertainty. 

Evidence scoring 
Evidence scores provide an empirical measure of the strength of evidence for risk-outcome pairs 
across risk factors in the GBD and are therefore useful for standardised comparison. Evidence scores 
evaluate the area between the lower bound of the 95% uncertainty interval and the x-axis for 
harmful risk factors, including PM2.5 pollution.  

Prior to generating an evidence score, we conducted an additional post-analysis step to detect and 
flag publication bias in the input data. This approach is based on the classic Egger’s Regression 
strategy, which is applied to the residuals in our model. In the current implementation, we do not 
correct for publication bias, but flag the risk-outcome pairs where the risk for publication bias is 
significant. Of the PM2.5 outcomes, three were flagged for publication bias: birthweight, ischaemic 
heart disease, and type 2 diabetes.  

Outcome Egger p-value Egger mean Egger SD Publication bias 

Birthweight 0.0208 -0.322 0.158 X 

Gestational age 0.249 -0.130 0.192  

Ischaemic heart 
disease 

0.0164 0.322 0.151 X 

Stroke 0.0717 0.186 0.127  

LRI 0.178 0.102 0.110  

Lung cancer 0.191 0.108 0.123  

COPD 0.423 0.0359 0.186  

Type 2 diabetes 0.0419 0.408 0.236 X 

 

A modified Trim-and-Fill approach was implemented in order to adjust for publication bias. Using 
this method, 5, 4, and 7 additional points were filled for birthweight, ischaemic heart disease, and 
type 2 diabetes, respectively, before refitting the model with the adjusted dataset. This adjusted 



model was used only to generate an adjusted evidence score, not to calculate population 
attributable fractions. 

To calculate the evidence score, we generated an uncertainty interval from 1000 draws of the 
adjusted summary effect size (retaining uncertainty information from between-study heterogeneity 
predictions and the Fisher information correction). We then evaluated the evidence score between 
the 15th and 85th percentiles of the input data exposure distribution. Evidence scores and star ratings 
are below. Evidence scores are not reported for birthweight and gestational age because these are 
mediated outcomes. 

Outcome Evidence score Star rating 
Ischaemic heart disease 0.259 3 

Stroke 0.167 3 

LRI 0.126 2 

Lung cancer 0.342 3 

COPD 0.441 4 

Type 2 diabetes 0.188 3 

 

The following table includes all ambient and household sources used to generate GBD 2020 risk 
curves. 
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The following figures display risk curves for each outcome. The dashed line depicts the GBD 2017 IER 
including active smoking data, the dotted line depicts the GBD 2019 MR-BRT curve without active 
smoking but with secondhand smoking data, and the solid line depicts the GBD 2020 MR-BRT curve 
without the inclusion of active smoking or secondhand smoking data. For GBD 2020, a single curve is 
used for cardiovascular diseases (ischaemic heart disease, stroke) for all ages, so only one plot is 
displayed for each of these outcomes. For the GBD 2017 and GBD 2020 curves, the curve for the age 
group 60–64 is plotted for the cardiovascular disease outcomes because these cycles used age-



specific cardiovascular disease curves. For birthweight and gestational age, no curve is displayed for 
GBD 2017 because these outcomes were added to the GBD in the 2019 cycle. The grey shaded areas 
represent the 95% CI. The red box represents the TMREL area of the curve. On each page, the first 
figure depicts the typical range of outdoor exposure, whereas the second plot includes higher levels 
typical of household air pollution exposure. 

Each point or number represents one study effect size. Each is plotted at the 95th percentile of the 
exposure distribution (OAP) or the expected level of exposure for individual using solid fuel (HAP). 
The relative risk is plotted relative to the predicted relative risk at the 5th percentile of exposure 
distribution (OAP) or the expected (ambient only) level of exposure for individuals not using solid 
fuel (HAP). For example, a study predicting a relative risk of 1.5 for an exposure range of 10 to 20 
would be plotted at (20, MRBRT(10)*1.5). Arrows represent studies that would have been outside 
the range of the plot but have been shifted to be included in the figure. 

  



 



 

 



 

 



 

 



 

 



 

 



Low birthweight and short gestation mediation analysis 
As in GBD 2019, in GBD 2020 low birthweight and short gestation were included as PM2.5 outcomes 
via a mediation analysis. Low birthweight and short gestation includes mortality due to diarrhoeal 
diseases, lower respiratory infections, upper respiratory infections, otitis media, meningitis, 
encephalitis, neonatal preterm birth, neonatal encephalopathy due to birth asphyxia and trauma, 
neonatal sepsis and other neonatal infections, haemolytic disease and other neonatal jaundice, and 
other neonatal disorders. Morbidity estimates were also calculated for neonatal preterm birth. 
These outcomes are specific to the neonatal ages: 0–6 days and 7–27 days. 

The following is a summary of methods used to conduct the mediation analysis. For GBD 2019, we 
conducted a systematic review of all cohort, case-control, or randomised-controlled trial studies of 
ambient PM2.5 pollution or household air pollution and birthweight or gestational age outcomes for 
GBD 2019.18 Outcomes measured included continuous birthweight (bw), continuous gestational age 
(ga), low birthweight (LBW) (<2500 g), preterm birth (PTB) (<37 weeks), and very preterm birth 
(VPTB) (<32 weeks). We included any papers published until April 4, 2021. 

Birthweight and gestational age are modelled using a continuous joint distribution for the GBD. To 
determine how these distributions are influenced by PM2.5 pollution, we used available literature to 
model the continuous shift in birthweight (bw, grams) and gestational age (ga, weeks) at a given 
PM2.5 exposure level. When available, we used estimates of continuous shifts in bw or ga directly 
from each study. When shifts were not available, we converted the published OR/RR/HR for LBW, 
PTB, or VPTB using the following strategy: 

1. Extract the OR/RR/HR from the study.  
2. Select the GBD 2017 estimated bw-ga joint 

distribution for the study location and year.  
3. Calculate the number of grams or weeks 

required to shift the distribution such that 
the proportion of births under the specified 
threshold (P) is reduced by the study effect 
size to a counterfactual level (Pcf).  

4. Save the resulting shift and 95% CI as the 
continuous effect. 

 

When preparing HAP data to fit splines, we used the 
same strategy described above for other outcomes to map HAP input data to PM2.5 exposure values. 
We then fit MR-BRT splines to the input studies, where the difference in the value of the model at 
the upper concentration (X) and the value of the model at the counterfactual concentration (XCF) is 
equal to the published or calculated shift in bw or ga: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋) −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋𝐶𝐶𝐶𝐶)~𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖 

We used the same model fitting process, settings, and covariate selection process as described 
above for the other outcomes. The only exception is that, because the change in birthweight and 
gestational age was expected to be negative, the splines were constrained to be monotonically 
decreasing. 

The following figures display MR-BRT curves for linear shift in grams (bw) and weeks (ga). 

 



 

 



 

 



We used the curves of estimated shifts across the exposure range to predict the shift in both 
birthweight and gestational age for total female particulate matter pollution exposure in each 
location and year. Because the epidemiological studies mutually controlled for birthweight and 
gestational age, we assumed these shifts are independent. We then shifted the observed 
distributions to reflect the expected bwga distribution in the absence of particulate matter pollution. 
These shifted distributions were used as the counterfactual in the PAF calculation equation to 
calculate the burden attributable to PM2.5 pollution. 

To calculate PAFs, the distribution is divided into 56 bw-ga categories, each with a unique RR. Let pi 
be the observed proportion of babies in category, i and pi’ be the counterfactual proportion of 
babies in category, i if there were no particulate matter pollution. 

𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃 =
∑ 𝑅𝑅𝑅𝑅𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 ∈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − ∑ 𝑅𝑅𝑅𝑅𝑖𝑖𝑝𝑝𝑖𝑖′𝑖𝑖∈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

∑ 𝑅𝑅𝑅𝑅𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 ∈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 

We proportionately split this PAF to ambient and HAP based on exposure as described below. One 
important assumption to note is that we assume the shift in bw and ga is linear across the bwga 
distribution.  

For lower respiratory infections, PM2.5-attributable PAFs are directly estimated in addition to 
estimated through bwga mediation. We expect that some of the directly estimated PAFs are 
mediated through bw and ga. Additionally, the directly estimated PAF is based on a summary of 
relative risks for all children under 5 years, so there is a possibility that the mediated PAF, which is 
more finely resolved, could be greater. To avoid double counting, for the two neonatal age groups 
(0–6 days and 0–27 days), we take the maximum of the two PAF estimates. If the directly estimated 
PAF is greater than the bwga-mediated PAF, we take the direct estimate, and if the mediated PAF is 
greater, we take the mediated estimate. 

PTB incidence and mortality are both outcomes measured in the GBD. 100% of the burden for this 
cause is attributable to short gestation. To calculate the percentage attributable to particulate 
matter pollution, we estimated the percentage of babies born at less than 37 weeks (pptb) and the 
percentage of babies that would have been born at less than 37 weeks in the counterfactual 
scenario of no particulate matter pollution (pptb’).  

𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝 = 1 −
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 

 
Limitations 
Although for GBD 2020 we have not used active smoking or secondhand smoking data to estimate 
PM2.5 risk curves, we still use an integrated exposure–response approach because we integrate 
relative risk estimates across ambient and HAP sources. The use of both source types to construct a 
risk curve with PM2.5 as the exposure indicator assumes equitoxicity of particles regardless of source, 
despite evidence suggesting differences in health impacts by specific PM source (eg, motor vehicles, 
coal-fired power plant), size, and/or chemical composition. However, in the absence of sufficient 
estimates of source- or composition-specific exposure–response relationships and consistent and 
robust evidence of differential toxicity by source, integrating across all OAP and HAP studies is the 
approach most consistent with the current evidence, as reviewed by USA EPA and WHO.19,20 



Proportional PAF approach 

Prior to GBD 2017, relative risks for both ambient and HAP exposures were obtained from the risk 
curve as a function of exposure, relative to the same TMREL. In reality, were a country to reduce 
only one of these risk factors, the other would remain. We did not consider the joint effects of 
particulate matter from outdoor exposure and burning solid fuels for cooking. For GBD 2017, we 
developed a new approach to use the risk curve for obtaining PAFs for both OAP and HAP, which 
was also implemented in GBD 2019 and 2020. 

Let 𝐸𝐸𝐸𝐸𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂 be the ambient PM2.5 exposure level and 𝐸𝐸𝐸𝐸𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻 be the excess exposure for those who 
use solid fuel for cooking. Let 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 be the proportion of the population using solid fuel for cooking. 
We calculated PAFs at each 0.1o × 0.1o grid cell. We assumed that the distribution of those using 
solid fuel for cooking (HAP) was equivalent across all grid cells of the GBD location. 

For the proportion of the population not exposed to HAP the relative risk was: 

𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂  =   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧 =  𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂)/𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇), 

And for those exposed to HAP, the relative risk was  

𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻  =   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧 =  𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻)/𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇). 

We then calculate a population-level RR and PAF for all particulate matter exposure: 

𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂(1− 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻) + 𝑅𝑅𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 − 1
𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃

 

We population weight the grid-cell level particulate matter PAFs to get a country level PAF, and 
finally, we split this PAF based on the average exposure to each OAP and HAP: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐸𝐸𝐸𝐸𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂
𝐸𝐸𝐸𝐸𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂+𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻∗𝐸𝐸𝐸𝐸𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻

𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃, and 𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻∗𝐸𝐸𝐸𝐸𝑝𝑝𝐻𝐻𝐻𝐻𝐻𝐻
𝐸𝐸𝐸𝐸𝑝𝑝𝑂𝑂𝑂𝑂𝑂𝑂+𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻∗𝐸𝐸𝐸𝐸𝑝𝑝𝐻𝐻𝐻𝐻𝑃𝑃

𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃. 

With this strategy, 𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻 + 𝑃𝑃𝑃𝑃𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂, and no burden is counted twice. 
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