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Input data and methodological summary  

Case definitions 

Exposure 
High body-mass index (BMI) for adults (ages 20+) is defined as BMI greater than 20 to 23 kg/m2. High BMI 

for children and adolescents (ages 2–19) is defined as being overweight or obese based on International 

Obesity Task Force standards.1 

Input data 

Exposure 
In GBD 2021, new data were added from sources included in the annual GHDx update of known survey 

series. We conducted a systematic review in GBD 2017 to identify studies providing nationally or 

subnationally representative estimates of overweight prevalence, obesity prevalence, or mean body-mass 

index (BMI). We limited the search to literature published between January 1, 2016, and December 31, 

2016, to update the systematic literature search previously performed as part of GBD 2015.  

The search for adults was conducted on 4 January 2017, using the following terms:  

((("Body Mass Index"[Mesh] OR "Overweight"[Mesh] OR "Obesity"[Mesh]) AND ("Geographic 

Locations"[Mesh] NOT “United States”[Mesh]) AND ("humans"[Mesh] AND "adult"[MeSH]) AND ("Data 

Collection"[Mesh] OR "Health Services Research"[Mesh] OR "Population Surveillance"[Mesh] OR "Vital 

statistics"[Mesh] OR "Population"[Mesh] OR "Epidemiology"[Mesh] OR "surve*"[TiAb]) NOT 

(Comment[ptyp] OR Case Reports[ptyp] OR "hospital"[TiAb])) AND ("2016/01/01"[Date - Publication] : 

"2016/12/31"[Date - Publication])) 

The search for children was conducted on 4 August 2016, using the following terms: 
((("Body Mass Index"[Mesh] OR "Overweight"[Mesh] OR "Obesity"[Mesh]) AND ("Geographic 

Locations"[Mesh] NOT “United States”[Mesh]) AND ("humans"[Mesh] AND "child"[MeSH]) AND ("Data 

Collection"[Mesh] OR "Health Services Research"[Mesh] OR "Population Surveillance"[Mesh] OR "Vital 

statistics"[Mesh] OR "Population"[Mesh] OR "Epidemiology"[Mesh] OR "surve*"[TiAb]) NOT 

(Comment[ptyp] OR Case Reports[ptyp] OR "hospital"[TiAb])) AND ("2016/01/01"[Date - Publication] : 

"2016/12/31"[Date - Publication])) 

Table 1: Data inputs for exposure for high body-mass index. 

 Input data Exposure 

Source count (total) 2016 

Number of countries with data 194 

 

Eligibility criteria 
We included representative studies providing data on mean BMI or prevalence of overweight or obesity 

among adults or children. For adults, studies were included if they defined overweight as BMI ≥25 kg/m2 

and obesity as BMI ≥30 kg/m2, or if estimates using those cutoffs could be back-calculated from reported 

categories. For children (children ages 2–19), studies were included if they used International Obesity Task 

Force (IOTF) standards to define overweight and obesity thresholds.1 We only included studies reporting 

data collected after January 1, 1980. Studies were excluded if they used non-random samples (eg, case-

control studies or convenience samples), conducted among specific subpopulations (eg, pregnant women, 



 

 
 

racial or ethnic minorities, immigrants, or individuals with specific diseases), used alternative methods to 

assess adiposity (eg, waist circumference, skin-fold thickness, or hydrodensitometry), had sample sizes of 

less than 20 per age-sex group, or provided inadequate information on any of the inclusion criteria. We 

also excluded review articles and non-English-language articles.  

Data collection process  
Where individual-level survey data were available, we computed mean BMI using weight and height. We 

then used BMI to determine the prevalence of overweight and obesity. For individuals aged over 19 years, 

we considered them to be overweight if their BMI was greater than or equal to 25 kg/m2, and obese if 

their BMI was greater than or equal to 30 kg/m2. For individuals aged 2 to 19 years, we used monthly IOTF 

cutoffs2 to determine overweight and obese status when age in months was available. When only age in 

years was available, we used the cutoff for the midpoint of that year. Obese individuals were also 

considered to be overweight. We excluded studies using the World Health Organization (WHO) standards 

or country-specific cutoffs to define childhood overweight and obesity. At the individual level, we 

considered BMI <10 kg/m2 and BMI >70 kg/m2 to be biologically implausible and excluded those 

observations. 

The rationale for choosing to use the IOTF cutoffs over the WHO standards has been described 

elsewhere.1 Briefly, the IOTF cutoffs provide consistent child-specific standards for ages 2–18 derived 

from surveys covering multiple countries. By contrast, the WHO growth standards apply to children under 

age 5, and the WHO growth reference applies to children ages 5–19. The WHO growth reference for 

children ages 5–19 was derived from United States data, which are less representative than the 

multinational data used by IOTF. Additionally, the switch between references at age 5 can produce 

artificial discontinuities. Given that we estimate global childhood overweight and obesity for ages 2–19 

(with age 19 using standard adult cutoffs), the IOTF cutoffs were preferable. Additionally, we found that 

IOTF cutoffs were more commonly used in scientific literature covering childhood obesity. 

From report and literature data, we extracted data on mean BMI, prevalence of overweight, and 

prevalence of obesity, measures of uncertainty for each, and sample size, by the most granular age and 

sex groups available. Additionally, we extracted the same study-level covariates as were extracted from 

microdata (measurement, urbanicity, and representativeness), as well as location and year.  

In addition to the primary indicators described above, we extracted relevant survey-design variables, 

including primary sampling unit, strata, and survey weights, which were used to tabulate individual-level 

microdata and produce accurate measures of uncertainty. We extracted three study-level covariates: 1) 

whether height and weight data were measured or self-reported; 2) whether the study was 

predominantly conducted in an urban area, rural area, or both; and 3) the level of representativeness of 

the study (national or subnational).  

Finally, we extracted relevant demographic indicators, including location, year, age, and sex. We 

estimated the standard error of the mean from individual-level data, where available, and used the 

reported standard error of the mean for published data. When multiple data sources were available for 

the same country, we included all of them in our analysis. If data from the same data source were 

available in multiple formats such as individual-level data and tabulated data, we used individual-level 

data. 



 

 
 

Relative risk 
In GBD 2021, we did not conduct an updated systematic review to identify new relative risk data sources. 

The last date of search in PubMed for evidence studying the health effects of high BMI on cardiovascular 

diseases and diabetes was 6 June 2019 using the following terms: ("Diabetes Mellitus"[Mesh] OR 

“diabetes"[title] OR "Stroke"[Mesh] OR “stroke[title]” OR "Heart Diseases"[Mesh] OR “Heart 

Diseases"[title] OR "Cardiovascular Diseases"[Mesh] OR "Cardiovascular Diseases"[title]) AND 

("Obesity"[Mesh] OR "Obesity"[title] OR "Overweight"[Mesh] OR "Overweight"[title] OR "Body Mass 

Index"[Mesh] OR "Body Mass Index"[title]) AND (“cohort”[tiab]). For other risk-outcome pairs, we used 

existing meta-analyses and systematic reviews to identify and extract pooled cohorts and prospective 

studies for analysis.  

Table 2: Data inputs for relative risks for high body-mass index. 

 Input data Relative risk 

Source count (total) 313 

Number of countries with data  26 

  

Data processing 

Age and sex splitting 
Any report or literature data provided in age groups wider than the standard five-year age groups or as 

both sexes combined were split using the approach used by Ng and colleagues.2 We first modelled age-

sex patterns with spatiotemporal Gaussian process regression (ST-GPR) using data sources reporting in 

sex-specific, standard five-year age units. To account for the large heterogeneity in overweight and 

obesity prevalence across geographical regions, we categorised each location into three categories of 

overweight and obesity prevalence. We then aggregated the modelled age and sex patterns into tertiles 

of overweight and obesity prevalence. Finally, the aggregated patterns were applied to split report and 

literature data based on the data source’s location and its respective tertile of overweight or obesity 

prevalence. We did not propagate the uncertainty in the age pattern and sex pattern used to split the 

data as they seemed to have small effect. 

Self-report bias adjustment 
We included both measured and self-reported data. We tested for bias in self-report data compared to 

measured data, which is considered to be the gold standard. There was no clear direction of bias for 

children ages 2–14, so for these age groups we only included measured data. For individuals ages 15 and 

older, we adjusted self-reported data for overweight prevalence and obesity prevalence. We used MR-

BRT to determine the level of self-report bias adjustment. For both overweight and obesity, we fit sex-

specific MR-BRT models on the logit difference between measured and self-reported with a fixed effect 

on super-region. The bias coefficients derived from these two models are in Table 1 and 2. 

A separate self-report bias adjustment was completed for the USA. Self-report data was compared to 

measured data from the NHANES survey series, which were selected as the gold standard for the USA.  

For individuals ages 2 and older, we adjusted self-reported data for overweight prevalence and obesity 

prevalence. We used MR-BRT to determine the level of self-report bias adjustment. For both overweight 

and obesity, we fit sex-specific MR-BRT models on the logit difference between NHANES measured and 



 

 
 

self-reported with a fixed effect on 5-year age groups and decade when the data was collected. The bias 

coefficients derived from these two models are in Table 3. 

 

Table 1: MR-BRT self-report crosswalk adjustment factors for overweight prevalence 

Model Data input Reference or 
alternative case 
definition 

Gamma Beta coefficient, 
logit 
(95% CI) 

Females Measured data Ref 0.26 
 

--- 

Self-reported data (southeast Asia, east 
Asia, and Oceania) 

Alt  –0.53 (–1.03, –0.04) 

Self-reported data (central Europe, 
eastern Europe, and central Asia) 

Alt –0.20 (–0.69, 0.30) 

Self-reported data (high-income) Alt  –0.25 (–0.75, 0.24) 

Self-reported data (Latin America and 
Caribbean) 

Alt –0.19 (–0.69, 0.31) 

Self-report data (north Africa and Middle 
East) 

Alt –0.38 (–0.89, 0.11) 

Self-report data (south Asia) Alt 0.36 (–0.14, 0.85) 

Self-report data (sub-Saharan Africa) Alt –0.26 (–0.76, 0.24) 

Males Measured data Ref 0.43 
 

--- 

Self-reported data (southeast Asia, east 
Asia, and Oceania) 

Alt  –0.36 (–1.17, 0.50) 

Self-reported data (central Europe, 
eastern Europe, and central Asia) 

Alt –0.03 (–0.84, 0.82) 

Self-reported data (high-income) Alt  0.05 (–0.77, 0.87) 

Self-reported data (Latin America and 
Caribbean) 

Alt –0.02 (–0.84, 0.81) 

Self-report data (north Africa and Middle 
East) 

Alt –0.21 (–1.04, 0.61) 

Self-report data (south Asia) Alt 0.53 (–0.28, 1.37) 

Self-report data (sub-Saharan Africa) Alt –0.27 (–1.09, 0.55) 
 

 

 

Table 2: MR-BRT self-report crosswalk adjustment factors for obesity prevalence  

Model Data input Reference or 
alternative case 
definition 

Gamma Beta coefficient, 
logit (95% UI) * 

Females Measured data Ref 0.38 
 

--- 

Self-reported data (southeast Asia, east 
Asia, and Oceania) 

Alt  –0.11 (–0.86, 0.64) 

Self-reported data (central Europe, 
eastern Europe, and central Asia) 

Alt –0.95 (–1.70, –0.19) 



 

 
 

Self-reported data (high-income) Alt  –0.42 (–1.16, 0.34) 

Self-reported data (Latin America and 
Caribbean) 

Alt –0.41 (–1.16, 0.34) 

Self-report data (north Africa and Middle 
East) 

Alt –0.48 (–1.23, 0.27) 

Self-report data (south Asia) Alt 0.50 (–0.25, 1.26) 

Self-report data (sub-Saharan Africa) Alt –0.41 (–1.16, 0.34) 

Males Measured data Ref 0.74 
 

 

Self-reported data (southeast Asia, east 
Asia, and Oceania) 

Alt  0.04 (–1.41, 1.53) 

Self-reported data (central Europe, 
eastern Europe, and central Asia) 

Alt –0.79 (–2.25, 0.71) 

Self-reported data (high-income) Alt  –0.13 (–1.58, 1.40) 

Self-reported data (Latin America and 
Caribbean) 

Alt –0.26 (–1.70, 1.21) 

Self-report data (north Africa and Middle 
East) 

Alt –0.33 (–1.77, 1.16) 

Self-report data (south Asia) Alt 0.66 (–0.78, 2.15) 

Self-report data (sub-Saharan Africa) Alt –0.41 (–1.86, 1.08) 
*MR-BRT crosswalk adjustments can be interpreted as the factor the alternative case definition is adjusted by to 

reflect what it would have been had it been measured using the reference case definition. If the log/logit beta 

coefficient is negative, then the alternative is adjusted up to the reference. If the log/logit beta coefficient is positive, 

then the alternative is adjusted down to the reference. 

 

Table 3: MR-BRT self-report crosswalk adjustment factors for USA overweight and obesity prevalence  

Model Data input Reference or 
alternative case 
definition 

Gamma Beta coefficient, 
logit (95% UI) * 

Overweight prevalence 

Females Measured NHANES data Ref 0.0052 
 

--- 

Self-report (intercept) Alt 0.08 (0.05, 0.11) 

Self-report (5-year age group) Alt  –0.02 (–0.02, -0.01) 

Self-report data (decade) Alt 0 (–0.02, 0.02) 

Males Measured NHANES data Ref 0.016 
 

--- 

Self-report (intercept) Alt -0.42 (-0.46, -0.37) 

Self-report (5-year age group) Alt -0.003 (–0.005, -
0.001) 

Self-report data (decade) Alt 0 (–0.03, 0.03) 

Obesity prevalence 

Females Measured NHANES data Ref 0.012 
 

--- 

Self-report (intercept) Alt -0.45 (-0.49, -0.41) 

Self-report (5-year age group) Alt  0.003 (0.001, 0.004) 

Self-report data (decade) Alt 0.01 (-0.02, 0.04) 

Males Measured NHANES data Ref 0.018 
 

--- 

Self-report (intercept) Alt -0.46 (-0.50, -0.41) 

Self-report (5-year age group) Alt 0 (–0.002, 0.001) 



 

 
 

Self-report data (decade) Alt 0.01 (–0.02, 0.04) 
*MR-BRT crosswalk adjustments can be interpreted as the factor the alternative case definition is adjusted by to 

reflect what it would have been had it been measured using the reference case definition. If the log/logit beta 

coefficient is negative, then the alternative is adjusted up to the reference. If the log/logit beta coefficient is positive, 

then the alternative is adjusted down to the reference. 

 

Modelling strategy  

Exposure 

Prevalence estimation for overweight and obesity 
After adjusting for self-report bias and splitting aggregated data into five-year age-sex groups, we used ST-

GPR to estimate the prevalence of overweight and obesity. This modelling approach has been described in 

detail elsewhere.  

The linear model, which when added to the smoothed residuals forms the mean prior for GPR is as 
follows:  
 

logit(overweight)c,a,t = β0 + β1educc,t +  β2urbanc,t +  β3agriculturec,t + ∑ βkIA[a]

16

k=1

+ αs + αr + αc 

logit(obesity/overweight)c,a,t = β0 + β1educc,t +  β2urbanc,t +  β3agriculturec,t + ∑ βkIA[a]

16

k=1

+ αs + αr + αc 

 

where educ is the age-standardised level of educational attainment; urban is the proportion of the 
population living in an urban area ; and agriculture is the proportion of the population working in 
agriculture. IA[a] is a dummy variable indicating specific age group A that the prevalence point captures, 

and αs, αr, and αc are super-region, region, and country nested random intercepts, respectively. Random 
effects were used in model fitting but were not used in prediction. 
 

We tested all combinations of the following covariates to see which performed best in terms of in-sample 
AIC for the overweight linear model and the obesity as a proportion of overweight linear model: ten-year 
lag-distributed energy per capita, proportion of the population living in urban areas, SDI, lag-distributed 
income per capita, educational attainment (years) per capita, proportion of the population working in 
agriculture, grams of sugar adjusted for energy per capita, grams of sugar not adjusted for energy per 
capita, and the number of two- or four-wheeled vehicles per capita. We selected these candidate 
covariates based on theory as well as reviewing covariates used in other publications. The final linear 
model was selected based on 1) if the direction of covariates matched what is expected from theory, 2) all 
the included covariates were significant, and 3) minimising in-sample AIC. The covariate selection process 
was performed using the dredge package in R. 
 

Estimating mean BMI 
To estimate the mean BMI for adults in each country, age, sex, and time period 1980–2021, we first used 

the following nested hierarchical mixed-effects model, fit using restricted maximum likelihood on data 

from sources containing estimates of all three indicators (prevalence of overweight, prevalence of 

obesity, and mean BMI), in order to characterise the relationship between overweight, obesity, and mean 

BMI:  



 

 
 

log (BMIc,a,s,t) = β0 + β1owc,a,s,t + β2obc,a,s,t + β3sex + ∑ βkIA[a]

12

k=1

+ αs(1 + owc,a,s,t + obc,a,s,t)

+ αr(1 + owc,a,s,t + obc,a,s,t) + αc(1 + owc,a,s,t + obc,a,s,t) + ϵc,a,s,t 
 

where owc,a,s,t is the prevalence of overweight in country c, age a, sex s, and year t, obc,a,s,t is the 

prevalence of obesity in country c, age a, sex s, and year t, sex is a fixed effect on sex, IA[a] is an indicator 

variable for age, and αs, αr, and αc are random effects at the super-region, region, and country level, 

respectively. The model was run in Stata 13. 

We applied 1000 draws of the regression coefficients to the 1000 draws of overweight prevalence and 

obesity prevalence produced through ST-GPR to estimate 1000 draws of mean BMI for each country, year, 

age, and sex. This approach ensured that overweight prevalence, obesity prevalence, and mean BMI were 

correlated at the draw level and uncertainty was propagated. 

Estimating BMI distribution 
We used the ensemble distribution approach described in the manuscript. We fit ensemble weights by 
source and sex, with source- and sex-specific weights averaged across all sources included to produce the 
final global weights. The ensemble weights were fit on measured microdata. The final ensemble weights 
were exponential = 0.002, gamma = 0.028, inverse gamma = 0.085, log-logistic = 0.187, Gumbel = 0.220, 
Weibull = 0.011, log-normal = 0.058, normal = 0.012, beta = 0.136, mirror gamma = 0.008, and mirror 
Gumbel = 0.113. 
 
1000 draws of BMI distributions for each location, year, age group, and sex estimated were produced by 
fitting an ensemble distribution using 1000 draws of estimated mean BMI, 1000 draws of estimated 
standard deviation, and the ensemble weights. Estimated standard deviation was produced by optimising 
a standard deviation to fit estimated overweight prevalence draws and estimated obesity prevalence 
draws. 
 

Relative risk 
In previous rounds of GBD, we reported the relative risk per five-unit change in BMI for disease endpoints 

using meta-analyses, and where available, pooled analyses of prospective observational studies. In GBD 

2021, we assessed risk–outcome pairs included in previous rounds of the GBD based on the available 

evidence supporting a causal effect. We used MR-BRT to estimate the non-linear dose–response 

relationships between high BMI and risk for 26 disease endpoints. Specifically, we used the evidence score 

framework to systematically determine the risk function and evaluate the strength of evidence for each 

risk–outcome pair. Further details on the evidence score framework are available in the general methods 

of the Appendix. 

The shape of dose–response relationships between BMI and risk for diseases has been well defined.3,4 To 

best account for the various shapes (eg, J-shaped, increasing, and decreasing) of these relationships, we 

used the MR-BRT tool to estimate the log relative risk associated with each level of BMI on a continuous 

scale. Outcome-specific model characteristics are described in Table 4. 

For each risk–outcome pair meta-regression, we considered study-level covariates that could potentially 

bias the study’s reported effect size estimates. These study-level covariates included indication of 

whether the study used a washout period, whether the study population was randomly sampled from the 



 

 
 

general population, whether the study measured or asked participants to self-report baseline BMI levels, 

whether the study determined outcomes based on administrative records or self-reports, and the level of 

adjustment for relevant confounders like age, sex, smoking, education, and income. We adjusted for 

these covariates in our meta-regression if they significantly biased our estimated relative risk function.  

We implemented the Fisher scoring correction to the heterogeneity parameter, which corrects for data-

sparse situations. In such cases, the between-study heterogeneity parameter estimate may be 0, simply 

from lack of data. The Fisher scoring correction uses a quantile of gamma, which is sensitive to the 

number of studies, study design, and reported uncertainty. 

We also added methodology to detect and flag publication bias. The approach is based on the classic 

Egger’s regression strategy, which is applied to the residuals in our model. In the current implementation, 

we do not correct for publication bias, but flag the risk–outcome pairs where the risk for publication bias 

is significant. We found no evidence of publication bias for the outcomes associated with high body-mass 

index. 

There is a well-documented attenuation of the risk for cardiovascular disease and diabetes due to 

metabolic risks factors throughout one’s life.5 To incorporate this age trend in the relative risks, we first 

identified the median age-at-event across all cohorts and considered that as the reference age group. We 

then assigned our risk curves to this reference age group. Then, we derived attenuation factors by taking 

the ratio of excess risk between each age group and the reference. Finally, we applied 1000 draws of the 

age-specific attenuation factors to 1000 draws of the reference age group’s risk curve to determine age-

specific risk curves that propagated the uncertainty of both the risk function and age pattern. 

For children and adolescent outcomes (ages 2–19), we computed dichotomous relative risks for 

overweight and obesity by modelling the log difference in relative risk between alternative groups (ie, 

overweight or obese) and reference groups (ie, normal weight) from prospective cohort studies. 

 

Table 4: Model characteristics for outcomes related to high body-mass index in adults 

Outcome Non-linear 
specifications and 
constraints 

Selected covariates Mean 
gamma 
solution 

Publication 
bias 

Alzheimer’s disease and 
other dementias 

*  Reverse causality; 
representative 
population 

0.332 No 

Asthma *  0.020 No 

Atrial fibrillation and 
flutter 

*  0.016 No 

Breast cancer (in 
premenopausal women) 

*  0.000 No 

Breast cancer (in 
postmenopausal 
women) 

* Representative 
population 

0.110 No 

Cataract **  0.157 No 

Colon and rectum cancer *  0.000 No 



 

 
 

* Cubic splines with 5 knots; left and right linear tails; Gaussian prior (0, 0.01) on max derivative of non-linear 

intervals. 

 

** Cubic splines with 5 knots; left and right linear tails; Gaussian prior (0, 0.01) on max derivative of non-linear 

intervals. 

 

Theoretical minimum risk exposure level  
For adults (ages 20+), the theoretical minimum risk exposure level (TMREL) of BMI (20–23 kg/m2) was 

determined based on the BMI level that was associated with the lowest risk of all-cause mortality. Briefly, 

after estimating all-age, cause-specific dose–response risk curves, we generated 1000 draws of an all-

cause mortality risk curve by taking weighted averages of 1000 draws of cause-specific risk curves. The 

weights were determined from the number of cause-specific global deaths from the GBD 2021 Causes of 

Death analysis. By generating the all-cause risk curve at the draw level, we were able to determine a 

distribution of the BMI levels that minimised all-cause mortality by assessing the level of BMI that 

minimised the risk for each of the 1000 draws.  

Diabetes mellitus type 2 * Objective exposure 
measurement; objective 
outcome ascertainment 

0.087 No 

Gallbladder and biliary 
diseases 

* Objective outcome 
ascertainment; level of 
adjusted confounders 

0.049 No 

Gallbladder and biliary 
tract cancer 

*  0.000 No 

Gout *  0.000 No 

Intracerebral 
haemorrhage and 
Subarachnoid 
haemorrhage 

* Objective exposure 
measurement 

0.118 No 

Ischaemic heart disease * Objective exposure 
measurement 

0.106 No 

Ischaemic stroke *  0.458 No 

Kidney cancer *  0.036 No 

Leukaemia *  0.000 No 

Liver cancer *  0.032 No 

Low back pain *  0.000 No 

Multiple myeloma **  0.000 No 

Non-Hodgkin lymphoma *  0.058 No 

Osteoarthritis *  0.045 No 

Ovarian cancer *  0.000 No 

Pancreatic cancer *  0.019 No 

Thyroid cancer *  0.000 No 

Uterine cancer *  0.008 No 



 

 
 

For children and adolescents (ages 2–19), the TMREL is “normal weight,” that is, not overweight or obese, 

based on IOTF cutoffs.1 
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